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An improved method to identify damping characteristics of a dynamic system is developed.
The method identi"es damping characteristics of the system in matrix forms directly from its
measured frequency response functions. Each di!erent damping mechanism is identi"ed in
a distinct matrix. Theoretical validation and related error analysis are conducted by
applying the method to a simple lumped parameter system. The method is implemented
experimentally to a thin beam of two di!erent damping con"gurations. The experimental
results demonstrate that the method will work well with realistic problems. Important
advantages of the method and potential applications are explained.
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1. INTRODUCTION

1.1. MOTIVATION OF THE WORK

Damping parameters have been of relatively minor concern to test engineers when
compared to other modal parameters. Often damping characteristics are identi"ed as
modal damping ratios, which represent combined e!ects of many di!erent damping
mechanisms without any spatial information. An experimental method is developed in this
work to identify damping characteristics of a dynamic system in damping matrices so that
types and spatial distributions of the damping can be identi"ed.

Identifying the damping in matrix form has an important potential application to hybrid
modelling of a mechanical system. In the hybrid modelling, the mass and sti!ness matrices
are formulated by the "nite element method (FEM) and the damping matrices are
formulated experimentally, which are then combined to obtain the system equation. The
advantage of such an approach is easily understood if it is considered that the mass and
sti!ness matrices are formulated quite accurately, but not the damping matrices by FEM.

1.2. RELATED PREVIOUS WORKS

Most techniques that have been proposed for damping matrices identi"cation use
frequency response functions (FRFs) indirectly, in which modal parameters such as natural
frequencies and modes are extracted from the FRF "rst, then damping matrices are
formulated using these modal parameters. Pilkey and Inman [1] proposed an iterative
approach to identify the viscous damping matrix. The method is based on the inverse
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eigenvalue problem concept, in which the damping matrix is constructed from the
eigenvalues and eigenvectors. Lancaster [2] developed an inverse method to calculate the
modal coe$cient matrices. In his approach, the mass, viscous damping and sti!ness
matrices of a system are computed from given eigenvalues and eigenvectors. Because these
methods use eigenvalues and eigenvectors, data once processed from FRFs, they are
considered more susceptible to measurement noises and errors. Obviously, abundant
literature is found on the general modal identi"cation subject. Ebersbach and Irretier [3]
studied the application of modal parameter estimation using frequency domain algorithms
to identify eigenvalues and eigenvectors from the measured FRFs of a structure. Allemang
and Brown [4] presented a uni"ed matrix polynomial approach to modal identi"cation in
order to identify eigenvalues and eigenvectors of a structure.

Chen and Tsuei [5}7] studied the e!ect of parameter identi"cation on modelling of
viscous and structural damping. They proposed to use the normal FRFs extracted
from the complex FRF and the singular-value decomposition (SVD) method to identify
the damping matrices. Their work was limited to theoretical study without any
experimental implementation. The theoretical scheme of the method developed in this
work generally follows the method proposed by Chen and Tsuei. The method was
generalized so that it can be applied to the experimental multi-input}multi-output (MIMO)
systems to identify and distinguish various mechanisms in distinct matrices directly from
the measured FRFs.

1.3. OVERVIEW OF THE WORK

In this paper, a new theoretical procedure for the damping identi"cation is discussed.
Veri"cation of the method is made by applying the method to a simple three
degree-of-freedom (3 d.o.f.) lumped parameter system that has both the viscous and
structural damping. The e!ect of the noise in the measured FRFs is also studied using this
example. The method is then applied to an experimental example to con"rm its practical
value in real engineering problems. A thin beam with clamped boundary conditions with
two damping con"gurations is used in the experiment. It is shown that the identi"cation
result explains the di!erent con"gurations very well; for example, the viscous damping
matrix becomes relatively large when a viscous damper is added to the beam.

2. THEORY OF DAMPING MATRICES IDENTIFICATION

2.1. THEORETICAL DEVELOPMENT

For a harmonic excitation, the equation of motion of a dynamic system of n d.o.f. is
represented by

MxK (t)#CxR (t)#( jD#K)x (t)"F (u)e +ut, (1)

where M, C, D and K are n]n matrices representing the mass, viscous damping, structural
damping and sti!ness of the system, respectively, j"J!1, and x (t) and f (t) are n]1
vectors representing the displacements and the applied forces.

Since x (t)"X(u)e+ut, equation (1) becomes

[K!Mu2]X (u)#juCX(u)#jDX(u)"F (u). (2)
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Identifying the normal FRF HN(u) such as

HN(u)"[K!Mu2]~1, (3)

equation (2) is written as

[HN (u)]~1X(u)#( juC#jD)X (u)"F (u). (4)

Pre-multiplying equation (4) by HN(u) results in

X (u)#jHN (u)(uC#D)X (u)"HN (u)F (u). (5)

Further, if we de"ne a real matrix G(u) as Chen and Tsuei [5] did,

G(u),HN (u)(uC#D). (6)

Then, equation (5) becomes

[I#jG(u)]X(u)"HN (u)F (u), (7)

where I is an identity matrix.
The displacement vector X (u) in equation (7) is related to the input force and the complex

FRF HC (u) by

X (u)"HC (u)F (u)"[HC
R
(u)#jHC

I
(u)]F (u), (8)

where HC
R
(u) and HC

I
(u) represent, respectively, the real and imaginary parts of HC(u). The

complex FRF HC (u) can be measured, therefore is the known information. Substituting
equation (8) into equation (7), one obtains

(I#jG (u))(HC
R
(u)#jHC

I
(u))F(u)"HN (u)F(u). (9)

From equation (9), it is easily seen that

(I#jG (u))(HC
R
(u)#jHC

I
)"HN. (10)

Since equation (10) is a complex equation, two equations are obtained from its real and
imaginary parts:

HN (u)"HC
R
(u)!G (u)HC

I
(u), G(u)HC

R
(u)"!HC

I
(u). (11, 12)

From equation (12), G(u) is expressed in terms of the known function HC(u):

G (u)"!HC
I
(u)HC

R
(u)~1. (13)

Equation (13) can be ill-conditioned when the matrix is inverted. A small error in the
estimation of the real part of the FRF (HC

R
(u)) may result in large errors in identi"ed

damping matrices. Over-determining the system equation and more accurate phase
matching of the force and acceleration transducers will alleviate this problem.

The normal FRF HN(u) is obtained by substituting equation (13) into equation (11):

HN(u)"HC
R
(u)#HC

I
(u)HC

R
(u)~1HC

I
(u). (14)
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Because G(u) and HN (u) are known now, equation (6) can be written as

[uHN(u)HN(u)]C
C

DD"G(u). (15)

Equation (15) can be used to solve the damping matrices C and D, which are the objectives
of the identi"cation. Thus, the damping matrices identi"cation procedure can be
summarized as follows: (1) obtain the complex FRF matrix HC(u) from measurement; (2)
"nd the normal FRF matrix HN (u) from equation (14); (3) "nd G(u) from equation (13); and
(4) "nd C and D from equation (15).

2.2. EXPERIMENTAL DAMPING IDENTIFICATION PROCEDURE

Equation (15) can be applied at more frequencies than necessary (two are the minimum
necessary) to make the equation over-determined. If k di!erent frequencies are used, the
equation becomes
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The damping matrices can be found by the pseudo-inverse procedure:
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where #means the pseudo-inverse of the matrix.
The measured FRF matrix HC(u) is the only necessary information to obtain the

damping matrices [C] and [D] to solve equation (17). The dimension of the complex FRF
matrix HC(u), therefore the dimension of damping matrices being identi"ed, is determined
by the d.o.f.s of the experimental model. For example, if HC(u) is obtained as a 4]4 matrix,
the damping matrices will be identi"ed as 4]4 matrices. In such a case, 16 FRFs between
4 input and 4 output points, or 10 FRFs if Maxwell's reciprocity theorem is applied, have to
be measured.

When the method is applied to build a FEM/experimental hybrid model, in which the
mass and sti!ness matrices are obtained from the FEM formulation [8, 9] and the damping
matrices are obtained experimentally by this method, the FEM model usually has a much
"ner mesh than the experimental model. Moreover, some d.o.f.s of the FEM model, such as
the rotational or in-plane d.o.f.s, cannot be measured in the experiment, which will force one
to expand the measured damping matrices. Therefore, it will be convenient to choose the
nodal points of the experimental model as a sub-set of those of the FEM model.



Figure 1. 3 d.o.f. lumped parameter system.

TABLE 1

Matrices of the 3 d.o.f. lumped parameter system

Viscous damping Structural damping
Mass matrix matrix Sti!ness matrix matrix

(kg) (N s/m) (N/m) (N/m)
[M] [C] [K] [D]

10 0 0 5 !3 0 5000 !3000 0 250 !150 0
0 14 0 !3 5)5 !2)5 !3000 5500 !2500 !150 350 !200
0 0 12 0 !2)5 2)5 0 !2500 2500 0 !200 200
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3. THEORETICAL VALIDATION OF THE PROCEDURE

The 3-d.o.f. system shown in Figure 1 is de"ned by the lumped masses m
1
, m

2
and m

3
of

10, 14 and 12 kg, and the spring constants k
1
, k

2
, and k

3
of 2000, 3000 and 2500 N/m, the

viscous damping coe$cients c
1
, c

2
, and c

3
of 2, 3 and 2)5 N s/m, and the structural damping

coe$cients d
1
, d

2
and d

3
of 100, 150 and 200 N/m respectively. The elements of the mass,

viscous damping, sti!ness and structural damping matrices of the system in Figure 1 are
calculated as in Table 1. It is noted that the mass and sti!ness matrices are shown only for
reference, and are not necessary in the damping identi"cation procedure.

Because the system has 3 d.o.f.s, nine FRFs are calculated at each frequency, forming
a 3]3 FRF matrix of a function of frequency. Then, assuming that these FRFs are available
from measurement, the procedure developed in the previous section is applied to "nd the
damping matrices. Obviously, the damping matrices shown in Table 1 have to be identi"ed
within numerical errors by the procedure.

Table 2 shows the viscous and structural damping matrices identi"ed by the
proposed method when the calculated FRFs are used without adding any noise. Two cases
are shown in the table. Case A is the identi"cation result obtained by modelling only
the viscous damping, and case B is the result when both the viscous and structural
damping e!ects are modelled. Correct matrices in the table stand for the theoretically
formulated damping matrices. Case B shows that the original damping matrices are
identi"ed exactly, which means the identi"cation algorithm is valid. In case A, the viscous
damping matrix is identi"ed di!erently compared to the original matrix, because the
matrix represents both the viscous and structural damping e!ects. Figure 2 compares FRFs
reconstructed using the identi"ed damping matrices corresponding to cases A and B,
and the mass and sti!ness matrices. As it is seen, the two FRFs are virtually
indistinguishable, which justi"es the common practice of using the concept of the equivalent
viscous damping to represent the combined e!ect of all damping mechanisms in lightly
damped systems.



TABLE 2

Estimated damping matrices from FRFs with 0% noise

Estimation
method Viscous damping [C] Structural damping [D]

Simulation 5 !3 0 250 !150 0
data !3 5)5 !2)5 !150 350 !200

0 !2)5 2)5 0 !200 200

Case A 15)6 !6)5 !1)1 * * *

Viscous damping !7)0 20)2 !9)4 * * *

model !0)7 !11)4 14.6 * * *

Case B 5 !3 0 250 !150 0
Viscous and structural !3 5)5 2)5 !150 350 !200

damping model 0 !2)5 2)5 0 !200 200

Figure 2. Comparisons of the reconstructed FRFs of 3 d.o.f. lumped mass system: (- - - -), viscous damping
model; (**), viscous and structural damping model.
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The e!ect of the measurement noise on the accuracy of the identi"cation result
can be studied by using FRFs mixed with various levels of noise. For this purpose,
FRFs are transformed to the time domain using the inverse Fourier transform (IFT) [10],
which result in impulse response functions. A random noise is added to these time
functions, which are transformed back to the frequency domain to obtain FRFs
contaminated with the noise. Figures 3 and 4 show H

22
, before and after 1% random

noise (based on the r.m.s value) is added. Table 3 shows the identi"cation result
obtained using the FRFs with 1% random noise. Again, case A is the identi"ed result
obtained using only the viscous damping matrix and case B is the result obtained using
both damping matrices. Figure 5 compares the two impulse response functions
reconstructed from the identi"ed damping matrices A and B and the mass and



Figure 3. FRF H
22

of 3 d.o.f. lumped parameter system.

Figure 4. FRF H
22

of 3 d.o.f. lumped parameter system after 1% noise is added.
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sti!ness matrices in Table 1. Again, two impulse response functions are virtually
indistinguishable. Table 3 and Figure 5 show that the damping matrices are identi"ed
accurately despite the 1% noise added to the FRFs.

4. STUDY OF ERROR DUE TO THE NOISE IN FRFS

4.1. RELATIVE MAGNITUDE OF DIFFERENT DAMPING MECHANISMS

It is expected that the e!ect of the noise on the accuracy of the damping identi"cation
will be dependent not only on the noise level but also on the magnitude of the damping.



TABLE 3

Estimated damping matrices from FRFs with 1% noise

Estimation
method Viscous damping [C] Structural damping [D]

Simulation 5 !3 0 250 !150 0
data !3 5)5 !2)5 !150 350 !200

0 !2)5 2)5 0 !200 200

Case A 15)6 !6)5 !1)1 * * *

Viscous damping !7)0 20)2 !9)4 * * *

model !0)7 !11)4 14.6 * * *

Case B 5)0 !3)0 0)0 249)4 !149)3 0)1
Viscous and structural !2)9 5)5 !2)4 !149)9 348)5 !199)5

damping model 0)0 !2)5 2)5 0)1 !199)1 199)2

Figure 5. Comparisons of the impulse response functions reconstructed from FRFs with 1% noise: (- - - -),
viscous damping model; (**), viscous and structural damping model.
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For example, if the structure is heavily damped, the objects of the identi"cation
(elements of the damping matrices) are large, therefore the accuracy of the identi"cation
will be less sensitive to the noise level. Therefore, it is necessary to cross-compare
the magnitudes of the damping and the noise level. Comparing the noise level
with the damping ratio makes sense because both are non-dimensional parameters.
For example, we may say that a 2% noise is large when compared with a 1%
damping ratio. Since the damping ratio is a concept based on the proportional viscous
damping that does not have any spatial information, it is necessary to de"ne
a new concept to assess the relative magnitude of the elements of general damping
matrices.

The damping forces induced by the viscous and structural damping mechanisms
associated with speci"c d.o.f. i and j can be considered as uC

ij
and D

ij
. Therefore, if one
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de"nes a frequency matrix such as

[u
ij
]"C

D
ij

C
ij
D, (18)

each element of this matrix represents the frequency below which the structural damping
e!ect is bigger than that of the viscous damping. For example, u

11
of the system in our

example is found to be 50 rad/s, which means that below 50 rad/s the e!ect of the
structural damping is a more dominant energy dissipation mechanism for the motion
induced at node 1 by the excitation force applied at node 1. Figures 6 and 7 show interesting
Figure 7. Structural damping index.

Figure 6. Viscous damping index.



Figure 8. FRF of the system with 0)1% viscous and structural damping and 0)1% noise: (- - - - -), without noise;
(**), 0)1% noise.
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concepts: the viscous damping index and the structural damping index, which are calculated
for the system being studied. Figure 6 (Figure 7) plots the percentage of the elements
of the matrix [u

ij
], whose values are lower (higher) than the frequency used as the

abscissa. Therefore, for instance, the structural (viscous) damping index is 45% (55%) at
10 Hz in Figure 7, which can be interpreted as approximately 45% (55%) of the
system d.o.f.s (4 out of 9 elements in this case) is damped more structurally than viscously.
Therefore, from Figures 6 and 7, it can be said that at or above 11 Hz the system is
damped primarily by the viscous damping mechanism, and at or below 8 Hz by the
structural damping. The frequency range in between may be considered as the transition
range.

Now, the concept of the damping ratio [11] is generalized. The elements of the viscous
and structural damping matrices are de"ned in terms of the damping ratio as

c
ij
"2]f

ij
]Jm

ij
]k

ij
, d

ij
"c

ij
]u

ij
, i, j"1, 2, 3. (19, 20)

The above equations are used to relate the general damping matrices to the damping ratio.
For example, 1% viscous damping matrix can be determined by equation (19) using
f
ij
"0)01. Then, using the viscous damping elements derived as such, 1% structural

damping elements are determined by equation (20). Figure 8 compares H
22

obtained for the
system with 0)1% structural and viscous damping de"ned in this way with 0)1 and 0%
noise.

4.2. STUDY OF NOISE EFFECT

The 3-d.o.f. systems with the same M and K matrices but with two di!erent
levels of damping ratios, 0)1 and 0)5%, are considered. For each case, nine FRFs
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are calculated, to which three levels of the random noises, 0)1, 0)5 and 1%, are added.
This results in six combinations of di!erent noise levels relative to the damping levels. For
example, the combination of 0)1% damping and 1% noise represents a system, which has
a very small damping, and whose measured FRFs are signi"cantly tainted with noises. In
this case, an accurate identi"cation is not expected. Further, an error vector is de"ned,
whose each element is the di!erence between the exact value and the identi"ed value divided
by the largest element of the damping matrix. For this example, which has nine matrix
elements, the error vector is de"ned in % units:

G
E
1

E
2

E
3

E
4

E
5

E
6

E
7

E
8

E
9

H"G
(c

11N
!c

11
)

(c
12N

!c
12

)

(c
13N

!c
13

)

(c
21N

!c
21

)

(c
22N

!c
22

)

(c
23N

!c
23

)

(c
31N

!c
31

)

(c
32N

!c
32

)

(c
33N

!c
33

)
H
Extracted

]
100

max([c
ij
])

, (21)

where, subscript N indicates the exact value.
Figure 9 shows the identi"cation error de"ned as above for the case with 0)1%

damping and 0)1% noise. When equations (17) is applied to identify damping matrices,
one can use FRFs at frequencies over the entire range or at frequencies around
the resonance peaks. The result obtained using the entire frequency range is marked as
&&entire frequency range'' and that obtained using the frequencies near the resonance
frequencies is marked as &&peak band'' in Figure 9 and other "gures to follow. Considering
the fact that the damping e!ect is more pronounced at frequencies near the resonance peaks,
it was expected that peak band cases would provide better results. This turns out to be
Figure 9. Error ratio diagram of a system with 0)1% damping and 0)1% noise. (a) The identi"ed viscous
damping: (***), peak band; (*e*), entire frequency range. (b) The identi"ed structural damping: (***), peak
band; (*e*), entire frequency range.



Figure 10. FRF of the system with 0)1% viscous and structural damping and 0)5% noise: (- - - - - -), without
noise; (**), 0)5% noise.

Figure 11. Error ratio diagram of a system with 0)1% damping and 0)5% noise. (a) The identi"ed viscous
damping: (***), peak band; (*e*), entire frequency range. (b) The identi"ed structural damping: (***), peak
band; (*e*), entire frequency range.
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not true for the structural damping, because its e!ect is predominantly in the low-frequency
range.

Figure 9 shows the maximum error as de"ned is about 100% when both the damping
ratio and noise are small but of the same order (0)1 and 0)1%). Figures 10 and 11 show the
case with 0)1% damping ratio and 0)5% noise level. Figures 12 and 13 show the case with
0)1% damping and 1% noise. As one can see from very large errors in these "gures, if
the noise is signi"cantly larger than the damping ratio, 5 to 1 and 10 to 1 in these cases, the
identi"cation result becomes useless.

In Figures 14 and 15, the damping is large compared to the noise, 0)5% damping and
0)1% noise. In this case, accurate results are obtained with a maximum error less than 10%.



Figure 12. FRF of the system with 0)1% viscous and structural damping and 1)0% noise: (- - - - - -), without
noise; (**), 1)0% noise.

Figure 13. Error ratio diagram of a system with 0)1% damping and 1)0% noise. (a) The identi"ed viscous
damping: (***), peak band; (*e*), entire frequency range. (b) The identi"ed structural damping: (***), peak
band; (*e*), entire frequency range.
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Figures 16 and 17 are for the case when both the damping and noise are large but at the
same level: 0)5 and 0)5%. The estimation error becomes almost the same order (maximum is
about 100%) as the case of Figure 9. Figures 18 and 19 are for the case when the damping
is relatively large (0.5%), but the noise is even larger (1%). Again, Figure 19 shows that the
identi"cation result contains errors that are too large to be useful. General conclusions can
be made from the error study.

f The accuracy of the direct damping identi"cation algorithm developed in this work
depends on the magnitude of the noise relative to the damping magnitude. The
identi"cation method works accurately if the noise level is the same as or lower than
the damping ratio.



Figure 14. FRF of the system with 0)5% viscous and structural damping and 0)1% noise: (- - - - - -), without
noise; (**), 0)1% noise.

Figure 15. Error ratio diagram of a system with 0)5% damping and 0)1% noise. (a) The identi"ed viscous
damping: (***), peak band; (*e*), entire frequency range. (b) The identi"ed structural damping: (***), peak
band; (*e*), entire frequency range.
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f Using the data from FRFs only around the resonance peak improves the accuracy
of the identi"ed viscous damping matrix slightly but not the structural damping
matrix.

5. EXPERIMENTAL IDENTIFICATION OF DAMPING MATRICES

The damping identi"cation procedure developed in this work was applied to a uniform
beam with its ends clamped as shown in Figure 20. Figure 21 shows the schematic diagram
of the test rig. The modal test was conducted by the multi-reference impact testing (MRIT)
scheme [12, 13] using four acceleration outputs and four impact locations, which results in
16 measured FRFs. Thus, the damping matrices are identi"ed as 4]4 matrices. Each



Figure 16. FRF of the system with 0)5% viscous and structural damping and 0)5% noise: (- - - - - -), without
noise; (**), 0)5% noise.

Figure 17. Error ratio diagram of a system with 0)5% damping and 0)5% noise. (a) The identi"ed viscous
damping: (***), peak band; (*e*), entire frequency range. (b) The identi"ed structural damping: (***), peak
band; (*e*), entire frequency range.
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impact position is 54 mm apart from each other, which de"nes the mesh size in the
experimental model. The physical properties and dimensions of the beam are listed in
Table 4.

5.1. DAMPING MATRICES OF THE BEAM WITHOUT MODIFICATION

The test was done using a single-reed, uniform width beam. Figure 22 shows FRF H
11

. It
shows that the beam has a resonance frequency around 383 Hz, which is very close to the
lowest resonance frequency calculated using the Euler beam theory. The identi"ed [C] and
[D] matrices are summarized in Table 5. As one can see from the table, the matrices have all



Figure 18. FRF of the system with 0)5% viscous and structural damping and 1)0% noise: (- - - - - -), without
noise; (**), 1)0% noise.

Figure 19. Error ratio diagram of a system with 0)5% damping and 1)0% noise. (a) The identi"ed viscous
damping: (***), peak band; (*e*), entire frequency range. (b) The identi"ed structural damping: (***), peak
band; (*e*), entire frequency range.

560 J.-H. LEE AND J. KIM
the positive diagonal elements as they should. The damping matrices are supposed to be
symmetric; however, some deviations are found, which are caused by the experimental
errors.

The modal damping ratio of the "rst mode is found to be 0)65%, therefore the
measurement noise should be lower than 0)65%. Although it is not possible to estimate
the noise level accurately, an indirect comparison can be made. Comparing the measured
FRF in Figure 22 with the theoretical FRFs in Figures 14 (0)5% damping and 0)1% noise)
and 16 (0)5% damping and 0)1% noise), it is seen that the measured FRF is cleaner than
either of the simulated FRFs, which suggests that the noise level in the experiment is
probably lower than 0)1%. Therefore, the measurement noise is believed to be not an issue
in this experiment.



Figure 20. Experimental set-up of the single-reed beam.

Figure 21. Schematic diagram of the test rig.

TABLE 4

Physical properties and dimensions of the beam tested

Material Steel Length (mm) 270)0
Young's modulus (Pa) 1)9]1011 Width (mm) 19)0

Density (kg/m3) 7750 Height (mm) 6)0
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Figure 23 compares two measured FRFs H
23

and H
32

, which have to be the same if the
reciprocal theorem is considered; however, they are slightly di!erent from each other. This
must have caused the non-symmetry of the o!-diagonal terms in the identi"ed damping
matrices.



Figure 22. Measured FRF of the single-reed beam.

Figure 23. Comparison of measured FRFs: (**), H
23

; (- - - - -), H
32

.
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5.2. DAMPING MATRICES OF THE BEAM WITH A VISCOUS DAMPER ATTACHED

The experiment was conducted after attaching a small viscous damper to the beam as
shown in Figure 24. The damper was attached to a point located 162 mm from the left end
of the beam. Figure 25 shows the FRF at the driving point measured at this set-up. In this
case, the damping ratio at the "rst mode is estimated as 3)87%, which means that the
measurement noise will not be any problem. The identi"ed [C] and [D] matrices are
summarized in Table 5. Again, all diagonal elements are positive and some deviations from
the symmetry are found. Compared to the matrices corresponding to the original beam, it is



Figure 24. Experimental set-up of the single-reed beam with a viscous damper attached.

Figure 25. Measured FRF of the single-reed beam with a viscous damper attached.
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recognized that the magnitude of the viscous damping matrix is increased signi"cantly as
expected.

6. CONCLUSION

A new method for the experimental identi"cation of damping characteristics of a general
dynamic system is developed. The method works directly with measured FRFs of the
system and identi"es di!erent types of damping mechanisms such as the internal structural
damping and the external viscous damping in separate matrices. Theoretical validation and
error study related to the measurement noise are conducted using a simple 3-d.o.f. system.



TABLE 5

Identi,ed viscous and structural damping matrices of the single-reed beam and the single-reed
beam with a viscous damper attached

Single-reed beam
Single-reed beam with a viscous damper attached

<iscous damping: [C] (]104 (N s/m))
0)0194 !0)3084 0)4716 !0)5095 0)9790 !4)4694 6)2058 !5)5155

!0)1054 0)4633 !0)6363 0)6238 0)1094 3)8552 !6)1914 6)6178
0)1840 !0)5777 0)7484 !0)6977 !0)8093 !3)1790 5)6252 !6)4731

!0)2019 0)5438 !0)6844 0)6376 0)6045 2)7216 !4)6019 4)9108

Structural damping: [D] (]107 (N/m))
0)6851 !1)2381 1)7360 !2)1633 0)6712 !0)9244 1)3907 !2)2416
0)4145 0)4458 !0)5257 0)7095 !0)1290 0)0568 !0)0135 0)0304
0)5428 !0)4469 0)4182 !0)6818 0)3866 !0)2689 0)2788 !0)6024

!0)8218 1)4651 !1)7733 2)0460 !1)0447 1)5801 !2)2265 3)4518
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The study shows that the method will provide accurate results if the noise level contained in
the measured FRFs is equal or lower than the equivalent damping ratio.

The method is applied experimentally to a thin beam with two di!erent con"gurations.
Two distinct con"gurations used are a single reed, an unmodi"ed beam, a single reed beam
with a viscous damper attached. The damping matrices identi"ed re#ect the di!erent
con"gurations very well. For example, the magnitudes of the elements of the viscous
damping matrix increase in much larger scale compared to those of the structural damping
matrix when the viscous damper is attached to the beam.

One of the best applications of the method is considered to be the hybrid modelling of
dynamic systems. In the application, the mass and sti!ness matrices are formulated using
FEM, and the damping matrices are formulated experimentally by the procedure developed
in this work. This approach will be very useful to model the complicated realistic systems
with hard-to-model energy loss mechanisms.
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